skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jorgenson, Corin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Although Artificial Intelligence (AI) projects are common and desired by many institutions and research teams, there are still relatively few success stories of AI in practical use for the Earth science community. Many AI practitioners in Earth science are trapped in the prototyping stage and their results have not yet been adopted by users. Many scientists are still hesitating to use AI in their research routine. This paper aims to capture the landscape of AI-powered geospatial data sciences by discussing the current and upcoming needs of the Earth and environmental community, such as what practical AI should look like, how to realize practical AI based on the current technical and data restrictions, and the expected outcome of AI projects and their long-term benefits and problems. This paper also discusses unavoidable changes in the near future concerning AI, such as the fast evolution of AI foundation models and AI laws, and how the Earth and environmental community should adapt to these changes. This paper provides an important reference to the geospatial data science community to adjust their research road maps, find best practices, boost the FAIRness (Findable, Accessible, Interoperable, and Reusable) aspects of AI research, and reasonably allocate human and computational resources to increase the practicality and efficiency of Earth AI research. 
    more » « less